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On the other hand, Pb-210 is considerably more particle reactive than Cs-137, and the 

observation that Pb-210 and Cs-137 inventories exhibit similar spatial patterns suggests 

that the Cs-137 distributions are not solely a product of the physicochemical 

environment.   

 Another relevant influence on radioisotope distributions in river-estuarine systems 

is suspended-sediment concentration.  The loading of metals (Fe, Mn, Co, and 

radioisotopes by relation) tends to be lower in the presence of high suspended-sediment 

concentrations (Benoit and Rozan, 1999).  This is observed in the Delaware estuarine 

turbidity maximum, where water-column metals concentrations exhibit a regional low 

(Biggs et al., 1983).  Because the tidal marshes down-estuary of Marcus Hook are 

hydraulically contiguous with waters of the turbidity maximum zone, low radioisotope 

inventories may reflect low specific activities due to high suspended-sediment 

concentrations.   

 In summary, it is clear from the radioisotope geochronologies and inventories that 

Woodbury Creek, Oldman's Creek, Rancocas Creek, St. George's marsh, and Salem 

marsh are important material sinks in the upper Delaware Estuary.  Because they are 

situated within a particularly sediment-rich reach, there is great potential for these and 

adjacent tidal marshes to trap material supplied by tidal waters.  Indeed, it is probable that 

the greater tidal-marsh system constitutes a significant terminal sink for fine-grained 

sediment derived from the Delaware watershed, as well as down-estuary erosional 

sources.  Given their proximity to industrial centers it is therefore likely that these 

marshes sequester particle-associated pollutants transported in the tidal Delaware River 

(e.g., Orson et al., 1992).  Detailed studies of sediment transport and deposition within 

the tidal marshes are needed to elucidate their role as fine-sediment sources and (or) sinks 

in the greater Delaware River-Estuary system.  

6. CONCLUSIONS 

 The major conclusions of this study are summarized below. 

(1) Bottom sediment types in the tidal Delaware River and upper estuary range from 

mud to gravel and are extremely variable both along- and across-channel.  Gravel, sand, 

and mud weight percentages vary by orders of magnitude, though the across-channel 

variability of sand and mud increases and decreases, respectively, from DRBC Zone 3 to 
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Zone 5.  The transition from a dominantly coarse-grained (sand and gravel) to fine-grain 

(clayey silt to silty clay) bottom type falls near the Zone 4−Zone 5 boundary between 

River Miles 75 and 85.  Evidence of a recent and localized change in sediment-transport 

mode, perhaps due to waterway engineering practices, is provided by an abrupt downcore 

change from medium-grained sand to mud at sites near the Rancocas River mouth and 

Marcus Hook shoal.  It is clear that the present bottom-sediment types differ from the 

native sedimentology in places. 

 

(2) Six major types of sedimentary environment were observed in the study area: (1) 

reworked bottom (three subclasses); (2) fine-grained deposition; (3) coarse-grained 

bedload; (4) non-deposition or erosion.  The vast majority of the area surveyed was 

characterized by a reworked bottom composed of various sediment types with grain sizes 

that generally decrease down-estuary of Philadelphia.  Reworking is signified by 

characteristic bedforms created by bottom currents and sediment transport, and is 

independently confirmed by non-steady-state profiles of Cs-137 and excess Pb-210.  

These radioisotopes reveal that fine-sediment deposition in much of the subtidal estuary 

is episodic and discontinuous on decadal timescales.  The most significant finding of this 

study is that fine-sediment accumulation occurs as discrete depocenters concentrated 

between Marcus Hook and New Castle; at the time of surveying, extensive deposits of 

fluidized mud were observed in the Marcus Hook shipping channel with an estimated 

mass 3.5x105 tons dry weight.  Areas of non-deposition or erosion are characterized by 

patchy bedrock exposures and (or) a coble bottom and are confined to the Tinicum 

Island−Chester reach.  Areas of coarse-grained bedload transport, characterized by 

continuous trains of sand ripples and waves, are best developed in the tidal river north of 

Philadelphia.   

 

(3) Fine-grained sediment deposition in the subtidal water of the upper estuary is 

intense (centimeters per month) on a seasonal basis as revealed by sediment distributions 

of the short-lived radioisotope Be-7.  In contrast, sedimentation rates averaged over the 

past several decades from Cs-137 profiles are on the order ~1 cm/yr, where net 

accumulation is apparent at all.  From this relationship it is clear that a large proportion of 
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sediments deposits rapidly emplaced on a seasonal basis are subsequently resuspended 

and redistributed such that net accumulation is low on the long term.  This redistribution 

effect is suggested by sediment inventories of Cs-137, merely 9−14 % of the predicted 

inventory and considerably lower than inventories for adjacent tidal marshes.   

 

(4) Sediment accumulation in tidal marshes of the upper Delaware Estuary is 

considerably more continuous (steady-state) than within adjacent open-water 

environments.  Based on Cs-137 and Pb-210 chronologies, sedimentation rates ranged 

from 0.3 cm/yr (in Rancocas Creek) to 1.5 cm/yr (in Woodbury Creek).  Sediment 

inventories of Cs-137 and excess Pb-210 suggest that Woodbury Creek, Oldman's Creek, 

and Rancocas Creek (all freshwater marshes) are particularly important repositories for 

fine-grained sediment and particle-associated substances in the upper estuary.  Additional 

studies of sediment transport and deposition within these and other marshes are needed to 

identify their role as material sources and (or) sinks.   
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